Silting mutation in triangulated categories

نویسندگان

  • Takuma Aihara
  • Osamu Iyama
چکیده

In representation theory of algebras the notion of ‘mutation’ often plays important roles, and two cases are well known, i.e. ‘cluster tilting mutation’ and ‘exceptional mutation’. In this paper we focus on ‘tilting mutation’, which has a disadvantage that it is often impossible, i.e. some of summands of a tilting object can not be replaced to get a new tilting object. The aim of this paper is to take away this disadvantage by introducing ‘silting mutation’ for silting objects as a generalization of ‘tilting mutation’. We shall develop a basic theory of silting mutation. In particular, we introduce a partial order on the set of silting objects and establish the relationship with ‘silting mutation’ by generalizing the theory of Riedtmann-Schofield and Happel-Unger. We show that iterated silting mutation act transitively on the set of silting objects for local, hereditary or canonical algebras. Finally we give a bijection between silting subcategories and certain t-structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Silting-discrete Triangulated Categories

The aim of this paper is to study silting-discrete triangulated categories. We establish a simple criterion for silting-discreteness in terms of 2-term silting objects. This gives a powerful tool to prove silting-discreteness of finite dimensional algebras. Moreover, we will show Bongartz-type Lemma for silting-discrete triangulated categories.

متن کامل

Auslander-Buchweitz Context and Co-t-structures

We show that the relative Auslander-Buchweitz context on a triangulated category T coincides with the notion of co-t-structure on certain triangulated subcategory of T (see Theorem 3.8). In the Krull-Schmidt case, we stablish a bijective correspondence between cot-structures and cosuspended, precovering subcategories (see Theorem 3.11). We also give a characterization of bounded co-t-structures...

متن کامل

AN INTRODUCTION TO HIGHER CLUSTER CATEGORIES

In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.

متن کامل

Intermediate Co-t-structures, Two-term Silting Objects, Τ-tilting Modules, and Torsion Classes

If (A,B) and (A′,B′) are co-t-structures of a triangulated category, then (A′,B′) is called intermediate if A ⊆ A′ ⊆ ΣA. Our main results show that intermediate co-t-structures are in bijection with two-term silting subcategories, and also with support τ -tilting subcategories under some assumptions. We also show that support τ -tilting subcategories are in bijection with certain finitely gener...

متن کامل

To my dearest parents and to

This thesis is concerned with higher cluster tilting objects in generalized higher cluster categories and tropical friezes associated with Dynkin diagrams. The generalized cluster category arising from a suitable 3-Calabi-Yau differential graded algebra was introduced by C. Amiot. It is Hom-finite, 2-Calabi-Yau and admits a canonical cluster-tilting object. In this thesis, we extend these resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2012